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1 Today

• Recap of an efficient algorithm (”Algorithm 2”) for correct list decoding for radius 1−
√

2R.

• An efficient algorithm (”Algorithm 3”) for correct list decoding for radius of 1−
√
R.

2 Recap of Algorithm 2

1. Interpolation: Find Q(X,Y ) such that Q(αi, yi) = 0 for each i = 1, · · · , n.

2. Factorization: Include in the list all M̂(X) that satisfy -

(a) deg(M̂(X)) ≤ k − 1

(b) (Y − M̂(X))|Q(X,Y )

(c) dH((M̂(α1), · · · , M̂(αn)), y) ≤ e = δn

The algorithm is said to be correct if the transmitted message polynomial is within the outputted list.
This is ensured by verifying that properties (a) and (c) are satisfied iff property (b) is satisfied. This is

done by considering the polynomial R(X) = Q(X,M(X)) and checking that it is the zero polynomial for
any M(X) satisfying (a) and (c). If this is the case, (Y −M(X))|Q(X,Y ).

Definition 1. (1, k−1)-degree/deg(R(X)) = maxi,j{i+ j(k−1) : qij is a non-zero coefficient in Q(X,Y )}.

For algorithm 2, Q(X,Y ) is defined as
∑

i,j:i+j(k−1)≤D qijX
iY j . The number of roots of R(X) is at least

n − e since whenever M(αi) = yi, Q(αi, yi) = 0 and hence R(αi) = 0. We want to choose D such that
e < 1−

√
2R.

Using a counting argument we got that the number of non-zero coefficients of Q(X,Y ) was ≥ D(D+1)
2(k−1) .

We also got that the number of constraints satisfied by these coefficients were exactly n. For the system of

equations to have a solution, we required D(D+1)
2(k−1) > n and hence could infer D.

3 Algorithm 3

1. Interpolation: Find a non-zero polynomial Q(X,Y ) such that its (1,k-1) degree ≤ D, and (αi, yi),
for i = 1, · · · , n, are roots of Q(X,Y ) each with multiplicity r.

2. Factorization: Include in the list all M̂(X) that satisfy -

(a) deg(M̂(X)) ≤ k − 1

(b) (Y − M̂(X))|Q(X,Y )

(c) dH((M̂(α1), · · · , M̂(αn)), y) ≤ e = δn
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3.1 Correctness

Now we state two claims to prove the correctness of the algorithm. The idea is the same: use a degree
argument on R(X). However, now due to the multiplicity, the number of constraints increases during step
1.

Claim 2. If (αi, yi) is a root of multiplicity r, for each i = 1, · · · , n, then the number of constraints satisfied

by the coefficients of Q(X,Y ) if nr(r+1)
2

Claim 3. If M(X) is a polynomial such that properties (a) and (c) hold and Q(X,Y) is a polynomial obtained
from step 1 of algorithm 3, then R(X) has at least n − e roots in {α1, · · · , αn}, each having multiplicity r.
i.e. If ali is a root of R(X) then (X − αi)

r|R(X).

Proof of correctness: In step 1, to interpolate such a polynomial, we require that the number of non-zero

coefficients, ≥ D(D+1)
2(k−1) , must be larger than the number of constraints on these coefficients. By claim 1, the

number of constraints is nr(r+1)
2 . Thus D(D+1)

2(k−1) > nr(r+1)
2 . This gives us D =

√
nr(r + 1)(k − 1).

By claim 2, R(X) has (n − e)r roots (when counted with multiplicity). To show that R(X) is the zero

polynomial, we want (n− e)r > D. Substituting the value for D, we get e < n =
√

n(r+1)(k−1)
r . Therefore,

e
n < 1−

√
(r+1)(k−1)

nr . Suppose we choose r = k − 1 we get our required e
n < 1−

√
R.

3.2 Multiplicity of Roots

Definition 4. f(x) has a root at 0, with multiplicity r, if Xr|f(X) (OR) f(x) does not have monomials of
degree < r.

Definition 5. f(x) has a root at α, with multiplicity r, if (X − α)r|f(X).

Remark f(x) has root α with multiplicity r iff f(X + α) has root 0 with multiplicity r.

Definition 6. Q(X,Y ) has a root at (0, 0) with multiplicity r if Q(X,Y ) contains no monomial of total
degree < r. i.e.

∑
i,j qijX

iY j such that qij = 0 for 0 ≤ i+ j ≤ r − 1.

Remark Q(X,Y ) has a root at (αi, yi) with multiplicity r, if Q(X + αi, Y + yi) has root (0, 0) with
multiplicity r.

3.3 Proof of Claim 2

Let (α, y) be a roots of multiplicity r, for each i = 1, · · · , n. This means that Q(X + α, Y + y) has a root at
(0, 0) with multiplicity r.

Suppose Q(X+α, Y +y) =
∑

i,j qij(X+α)i(Y +y)j =
∑

i′,j′ q̃i′j′X
i′Y j′ . By multiplicity, we have q̃i,j = 0

for all i + j ≤ r − 1. Therefore total number of zero coefficients for a fixed (α, y) is
∑r−1

j=0(r − j) = r(r+1)
2 .

Thus for all (αi, yi), number of zero coefficients is nr(r+1)
2 . Each of these behave as a constraint and hence

there are nr(r+1)
2 many constraints.

Remark We can show the relation between qij and q̃ij .
∑

i,j qij(X + α)i(Y + y)j =
∑

i′,j′ q̃i′j′X
i′Y j′ .

Consider the LHS. Expanding the inner terms using binomial expansion we have,

∑
i,j

qij [

i∑
i′=0

(
i

i′

)
Xi′αi−i′ ][

j∑
j′=0

(
j

j′

)
Y j′yj−j

′
]

.
Reversing the order of summations we get,

ECE537 Topics in Coding Theory, Lecture 10-2



∑
i′,j′

[
∑

i≥i′,j≥j′
qij

(
i

i′

)
αi−i′

(
j

j′

)
yj−j

′
]Xi′Y j′

Hence,

q̃i′j′ = [
∑

i≥i′,j≥j′
qij

(
i

i′

)
αi−i′

(
j

j′

)
yj−j

′
]

3.4 Proof of Claim 3

As stated before, the number of roots of R(X) is at least n − e since whenever M(αi) = yi, Q(αi, yi) = 0
and hence R(αi) = 0. Let (α, y) be at one such position. We want to show that R(X) has a root at α with
multiplicity r.

Equivalently, we want to show that R(X + α) is divisible by Xr.
Now, R(X+α) = Q(X+α,M(X+α)). Adding and subtracting y, R(X+α) = Q(X+α,M(X+α+y−y)).

Let M̃(X + α) = M(X + α)− y. Thus, R(X + α) = Q(X + α, M̃(X + α) + y).
Note that for TildeM(X + α) = M(X + α) − y, we have M̃(0 + α) = M(0 + α) − y. By our choice of

(α, y), M(α)− y = 0. Hence, X|M̃(x+ α), or, M̃(X + α) = Xg(X) for some polynomial g(X).
Looking at R(X + α),

R(X + α) = Q(X + α, M̃(X + α) + y)

We know that Q(X + α, Y + y) does not have a monomial of degree < r. Expanding,

=
∑

ij:i+j≥r

q̃ijX
iM̃(X + α)j

Substituting M̃(X + α) = Xg(X),

=
∑

ij:i+j≥r

q̃ijX
iXjg(X)j

=
∑

ij:i+j≥r

q̃ijX
i+jg(X)j

Since i+ j ≥ r, each monomial is divisible by Xr. Hence Xr|R(X + α).
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